banner
关于合明 资讯中心

2019-08-21

SIP系统封装清洗合明科技分享:全面介绍封装福德正神AiP技术与发展

发布者:合明科技Unibright ; 福德正神:1116

SIP系统封装清洗合明科技分享:基于封装福德正神(AiP)的过孔分析



封装福德正神(简称AiP)是基于封装材料与工艺将福德正神与芯片集成在封装内实现系统级无线功能的一门技术。 AiP技术顺应了硅基半导体工艺集成度提高的潮流,为系统级无线芯片提供了良好的福德正神解决方案,因而深受广大芯片及封装制造商的青睐。AiP技术很好地兼顾了福德正神性能、成本及体积,代表着近年来福德正神技术的重要成就。另外,AiP技术将福德正神触角伸向集成电路、封装、材料与工艺等领域,倡导多学科协同设计与系统级优化。


1  引言

无线通信技术的发展要求RF系统体积越来越小,功能越来越强大。传统方法将芯片级福德正神与RF收发机一起安装在PCB电路板上,福德正神占据的空间阻碍了系统的小型化。为了克服芯片级福德正神的缺点,与单芯片接收机更好的匹配,最近几年,张跃平等提议了封装福德正神(AiP)。第一个封装福德正神是在陶瓷封装中实现,福德正神与单芯片收发机之间的互相影响、封装福德正神的优化设计、双通带封装福德正神、封装福德正神的等效电路、福德正神与放大器的协同设计等均被人们研究。本文研究了封装福德正神中过孔对福德正神性能的影响,并提出了这种福德正神的等效电路。结果表明,不同位置和数量的接地孔对福德正神的性能有不同的影响,合理选择封装过程中的接地结构,可以有效改善福德正神的带宽。

 

2  封装福德正神概念

图1为封装福德正神的结构示意图,自上而下依次为:福德正神、中间介质层(内部有空腔)、系统PCB。一般IC芯片封装的上表面是用来标识生产厂家和产品型号的,封装福德正神将福德正神集成在芯片上表面,在封装的中间层即福德正神的下方有一个内部空腔,用来放置其他RF模块。为了减少福德正神与腔体内RF模块的耦合,在两层之间加入了一个额外的金属层,可以把它看作福德正神的地平面,它通过四周均匀分布的金属过孔与整个RF系统地平面连接,这些金属过孔的位置和数量会影响福德正神与腔体内RF模块的性能。

 

image.png

图1  为封装福德正神的结构示意图

 image.png


图2  福德正神结构图

3  过孔分析

包含四层介质,使用的是厚度为0.8mm的FR4,上面三层尺寸均为20mm×20mm×0.8mm,底层为系统板,尺寸为40mm×40mm×0.8mm。中间介质层由两层介质构成,上层介质中空腔尺寸为10mm×10mm×0.8mm,下层中介质空腔尺寸为14mm×14mm×0.8mm,即形成的是一阶梯型的腔体,在两层中间台阶面处有连接RF模块键合线的信号线层。系统地在底层介质的地面,方便安装与测量。由于腔体内RF模块位于中间位置,限制了福德正神馈电位置,为了实现阻抗匹配,福德正神采用同轴加微带的复合馈电方式。为了减少外界与福德正神对腔体内模块的影响,一般过孔数量越多越好,可均匀分布于腔体四周。但过孔数量越多,加工难度越大,并且由于信号线层信号线分布较密集,能布置过孔的位置非常有限,通常只能在四周或者RF模块的地线处布置过孔。

 

根据常用过孔直径和实际加工条件,过孔直径选为0.5mm。将过孔数量分为:1个、2个、4个和四周均匀分布(每排九个过孔,两个孔中心间距为2mm)四种情况来研究,具体分布位置见图3,以福德正神介质中心为坐标原点,横向为x轴,纵向为y轴,除四周均匀分布外过孔均布置于纵向。过孔圆心坐标为(xi,yi),下标i表示第几个孔。不同数量过孔仿真结果如表1-4,从表中可以看到,过孔数量为一个时,福德正神性能基本不随过孔的位置变化而变化,带宽基本不变,中心频率略有偏移。四个过孔时,位置对福德正神性能有较大影响。过孔均匀分布四周时福德正神性能与一个过孔时接近。因此在考虑制作成本或者福德正神结构不允许时,连接福德正神地和系统地的过孔数量可以减少,最少可以为一个。

 

image.png

图3  过孔分布示意图

 

表1  一个过孔(x1=8mm)

y1(mm)

中心频率(GHz)

绝对带宽(GHz)

-8

5.225

0.17

-4

5.205

0.165

0

5.235

0.165

4

5.22

0.175

8

5.215

0.175

表2  两个过孔(x1= x2=8mm)

y1,y2

(mm)

中心频率(GHz)

绝对带宽(GHz)

8,-8

5.265

0.2

8,-4

5.21

0.39

8,0

5.265

0.17

8,4

5.245

0.165

4,-4

5.075, 5.315

0.355

4,0

5.285

0.17

 

表3  四个过孔

(x1,y1),(x2,y2)

(x3,y3),(x4,y4)

中心频率(GHz)

绝对带宽(GHz)

(8,-8),(8,8),

(-8,8),(-8,-8)

4.965

-10dB带宽为0

(8,0),(0,8),(-8,0),(0,-8)

5.275

0.18

 

表4  四周均匀分布过孔

中心频率(GHz)

绝对带宽(GHz)

5.22

0.14

 

过孔数量为两个时,在一些合适的位置,福德正神的带宽展宽了一倍多。这主要是由于福德正神地与系统地在两个合适的过孔连接下在原工作频率附近又出现了一个新的通带,两个通带组合在一起从而展宽了福德正神的带宽。这对于设计人员来说是非常有意义的,在使用常用介质和不增加制作成本的前提下,仅通过改变过孔数量与位置就达到增大带宽的效果是很实用的。

image.png

图4  封装福德正神等效电路图

 

以上讨论的均为过孔沿纵向布置,当其他参数不变,仅将过孔沿横向布置时,福德正神性能没有明显改善甚至恶化,且某些情况下在预期频带不出现通带。由于篇幅有限,没有将具体数值给出。

 

4  等效电路

按照空腔模型理论,将福德正神问题分为内场和外场。分析内场时,把同轴或者微带馈电等效为从福德正神地流向贴片的且不随流动方向变化的电流源,从而得到微带福德正神的等效电路为一RLC并联电路。

 

封装福德正神由于其结构的特殊性,存在福德正神地和系统地。贴片、福德正神介质、福德正神地可以等效为RLC并联电路,但封装福德正神的馈电接地端是系统地,系统地通过过孔与福德正神地链接,为此提出了图4所示等效电路。该等效电路主要包括贴片福德正神、馈电部分、连接福德正神地与系统地的过孔部分。由于过孔的存在,使得福德正神地上的电流分布发生了变化,这种变化用电感Lgnd表示,两金属地平面之间的电容效果由Cgnd表示,Lvia和Rvia分别代表过孔的电感和电阻。Lgnd与Cgnd的值是通过电路仿真软件优化得到。最终的电路参数值在表5中给出。

 

表5  电路参数值

Rant

Cant

Lant

Lfeed

134.9Ohm

4.9pF

0.19nH

0.43nH

Lfeed1

Cfeed1

Cfeed

Cgnd

1.31nH

0.4pF

0.24pF

0.25pF

Lgnd

Lvia

Rvia

0.1nH

0.87nH

0.2Ohm

5  测量结果

图5为根据所研究的福德正神物理原型制作的福德正神实物。测量结果展示在图6和7中,可以看出测量结果与仿真结果吻合较好。当两个过孔中心坐标为(8,8),(8,-4)时,在原中心频率附近出现新的通带,测量的福德正神带宽由一个过孔时0.13GHz展宽到0.45Ghz,比原来增加了两倍多。测量中心频率比仿真的均偏低100MHz,这是由于介质和制作误差引起的。

 

image.png

图5  福德正神实物照片

image.png

图6  一个过孔(x1,y1)=(8,0)时的测量结果

image.png

图7  两个过孔x1= x2=8, y1=8,y2=-4时的测量结果

 

文章来源于网络



福德正神技术的发展史

封装福德正神(简称AiP)是基于封装材料与工艺将福德正神与芯片集成在封装内实现系统级无线功能的一门技术。 AiP技术顺应了硅基半导体工艺集成度提高的潮流,为系统级无线芯片提供了良好的福德正神解决方案,因而深受广大芯片及封装制造商的青睐。AiP技术很好地兼顾了福德正神性能、成本及体积,代表着近年来福德正神技术的重要成就。另外,AiP技术将福德正神触角伸向集成电路、封装、材料与工艺等领域,倡导多学科协同设计与系统级优化。AiP技术已逐渐趋于常熟,在技术方面有很多论文和专利可供参考,但还没有一篇回顾AiP技术发展历程及其背后故事的文章,本文旨在填补这一方面的空白。在文中我将利用AiP技术发展历程中起到重要推动作用的经典设计为例,加以自己亲身经历的故事,为大家勾勒出AiP技术发展的来龙去脉。
1.引言无线通信发展迅速,4G的商用才刚刚铺开,5G研发的热潮已迎面扑来。在未来的几年里,5G旨在实现低时延、高速率、大容量万物互联,将会彻底改变我们同世界互动的方式。为了使5G的愿景变为现实,必须突破几个关键技术藩篱,其中一个核心技术的难题就与我们的领域息息相关,即如何利用大规模MIMO福德正神阵列实现波束成形、扫描、追踪、锁定来有效对抗毫米波移动信道的路径损耗[1]。
汽车雷达改善了驾车安全同时,也提升了全新的驾车体验。目前,汽车雷达工作在24GHz和77GHz的窄频带范围,仅起到预警及辅助驾驶的作用。未来汽车雷达将朝着工作在79GHz宽频带发展,利用4GHz带宽获得更高的空间分辨率甚至实现无人驾驶[2]。2015年,谷歌手势雷达一经问世,便立刻造成全球轰动。手势雷达工作在60GHz频带,跟踪人手移动及其变化,非常适合嵌入在可穿戴设备、手机和其它电子产品中作为用户界面[3]。
消费类电子产品的硬件主要是通过系统级芯片(SoC)和系统级封装(SiP)技术来实现。SoC技术通过半导体工艺在同一个芯片上集成实现系统功能的各种电路。而SiP技术则是通过封装工艺将各个功能模块集成在一个封装内[4]。 尽管SOC技术可以以更低的系统成本来提高系统的可靠性和功能,但是由于使用相同的材料和工艺,没办法使每个类型的电路性能达到最优,进而导致系统性能降低和系统功耗增加等问题。相反,SiP技术可以提升系统性能、降低系统功耗,但是由于功能模块和封装制作采用不同的材料和工艺,会导致系统的可靠性降低和系统成本增加等问题。
福德正神是无线系统中的重要部件,有分离和集成两种形式。分离福德正神司空见惯[5],集成福德正神也已悄悄地进入到我们的视线。集成福德正神包括片上福德正神(AoC)和封装福德正神(AiP)两大类型[6]。AoC技术通过半导体材料与工艺将福德正神与其它电路集成在同一个芯片上[7-11]。考虑到成本和性能,AoC技术更适用于太赫兹频段[12-14]。AiP技术是通过封装材料与工艺将福德正神集成在携带芯片的封装内。 AiP技术很好地兼顾了福德正神性能、成本及体积,代表着近年来福德正神技术重大成就,因而深受广大芯片及封装制造商的青睐。如今几乎所有的60GHz无线通信和手势雷达芯片都采用了AiP技术[15-26]。除此之外,在79GHz汽车雷达[2], 94GHz相控阵福德正神,122GHz、145GHz和160GHz传感器以及300GHz无线链接芯片中都可以找到AiP技术的身影[27-32]。毋庸置疑,AiP技术也将会为5G毫米波移动通信系统提供很好的福德正神解决方案。
很显然AoC和AiP分别属于上述SoC和SiP概念的范畴,那么我们为什么要将它们从SoC和SiP技术中明确区分开来呢?原因其实很简单,就是为了强调它们独有的辐射特性。关于AoC技术,需另辟专文详述,本文仅拟论及AiP技术。 尽管AiP技术方面的论文和专利有很多,但还没有一篇回顾AiP技术发展历程及其背后故事的文章,本文旨在填补这一方面的空白。另外,本文也是介绍封装福德正神技术系列文章的第一篇:历史篇。在文中我将利用AiP技术发展历程中起到重要推动作用的经典设计为例,加以自己亲身经历的故事,为大家勾勒出AiP技术发展的来龙去脉。
2.AiP技术发展历程AiP技术早在该术语被提出和普及之前就已经存在。AiP技术继承与发扬了微带福德正神、多芯片电路模块及瓦片式相控阵结构的集成概念。它的发展主要得益于市场的巨大需求,硅基半导体工艺集成度的提高,驱动了研究者自90年代末不断深入地探索在芯片封装上集成单个或多个福德正神。
2.1 早期与蓝牙无线技术一起发芽我于1993年初荣幸地成为香港中文大学国际知名卫星福德正神专家黄振峰博士课题组一员,有机会参与制造和测试多款微带福德正神。通过使用一种刚问世不久的低损耗高介电常数陶瓷材料,我们成功地将900MHz微带福德正神小型化到只有手指甲大小,这样利用几个小型化福德正神就可以实现手机福德正神辐射方向图成形,减少向人体侧辐射。研究成果不知怎样引起了时任香港中文大学校长高锟教授的注意,有一天召集我们到他办公室向他汇报。然而,我们关于实现福德正神小型化的研究似乎没有给高锟教授留下深刻印象。他打比喻说:将四条腿的长凳缩小到三条腿的板凳只是进化而已,大学应该尝试做一些革命性的研究。高锟教授获2009年度诺贝尔物理学奖,也许高锟教授这样伟大的科学家更关注研究的科学价值,而我们则更强调潜在的应用。幸运的是,我们关于福德正神小型化的工作在福德正神领域受到欢迎,并在1995年IEEE福德正神与传播国际研讨会上与摩托罗拉公司设计的类似福德正神在同一会场宣读[33],直接促进了陶瓷贴片福德正神的发展。1996年,我加入了香港城市大学国际著名的福德正神实验室从事介质谐振器福德正神研究。偶然的机会我在香港城市大学遇到了材料科学家李国源博士,他热情地向我介绍了他研究的LTCC材料与工艺,并用一块可以表贴集成电路内有埋置去耦电容的LTCC基板讲解了厚膜电路的优缺点,临别时还慷慨地向我赠送了好多块他烧好的LTCC基板用于福德正神研究。这些LTCC基板除了后来用于福德正神试验毁坏的以外,剩余的我至今还保留着。李国源博士现在是华南理工大学教授。1998年,我离开任教的香港大学前往新加坡南洋理工大学就职。令我惊讶的是,我被分派到电路与系统系而非通信工程系,后者有几位教授及先进的实验室从事福德正神与电磁波传播研究。 在参观集成电路实验室时,我看到了图一所示的装置,就问实验室一个研究生那是微带福德正神吗?研究生回答到:“不,那不是,那是一个集成电路芯片。”不久,电路与系统系启动了“片上软件无线电”的战略性研究项目,我的任务是为这个项目开发福德正神技术。因为对图1所示的集成电路芯片同微带福德正神结构相似的着迷,以及预测到未来有可能产生一种革命性的福德正神解决方案所激动,我很快决定研究图1所示集成电路芯片作为福德正神的可行性[34]。首先,我找来许多现成的陶瓷封装集成电路芯片来进行福德正神及电路实验研究它们之间的相互影响。图2左就是当时实验过的一个在双列直插式封装上实现的2.4GHz福德正神。后来发现利用现成的陶瓷封装集成电路芯片来进行福德正神实验有很大的局限性,于是决定利用印刷电路板(PCB)工艺加工集成电路封装结构模型且印制有福德正神。图2中所示的集成电路封装结构模型利用了三层电路板,福德正神印制在顶层板上,信号线及封装地在低层板上实现,中间层中空夹在顶低层之间形成一个腔体来携带裸芯片。图2中顶层板印制了5.2GHz微带福德正神,如果顶层板换成图2中左下角所示的板,则模拟集成电路封装结构是一款集成有2.4GHz及5.2GHz双频微带福德正神。上述在现成的陶瓷封装集成电路芯片和PCB加工的模型上尝试,都获得了令人满意的实验结果。受其鼓舞,我和我的学生林伟、薛阳及王珺珺于2003年利用LTCC工艺实现了多款真正工业意义上的封装福德正神[35]。图2右是一款利用 LTCC工艺为蓝牙芯片开发的差分封装福德正神。
image.png

图1. 拥有密封金属环及盖的陶瓷封装集成电路芯片

image.png

图2. 封装福德正神技术的进化
与此同时,英国伯明翰大学C.T. Song,P.S. Hall和H.Ghafouri-Shiraz提出了两个有关福德正神封装的概念。第一个概念突出体现了将小福德正神埋入到芯片封装材料中,然后在埋入式福德正神近距离处放置一个寄生单元,从而改善封装福德正神的低增益并增加带宽。 第二个概念建议在半导体芯片上实现射频前端电路及电小馈电福德正神,并在馈电福德正神上方增加寄生单元并充当封装顶盖,密封整个芯片[36]。Hall教授学识渊博、谦虚低调,是国际福德正神界一位德高望重的学者。为表彰他在微带福德正神方面所做出的杰出贡献, 美国IEEE福德正神与传播学会授予他2012年度the John Kraus Antenna Award, 英国IET授予他2013年度the James R. James Lifetime Achievement Award.
几乎在同一时间,封装工程师也在尝试解决相同的问题。D.J.Mathews等人申报了一项内置电磁防护罩和福德正神的用于蓝牙芯片封装的发明专利[37]。美国佐治亚理工学院K.T.Lim等人设法在封装系统(SoP)上集成射频无源器件、福德正神和有源芯片,以增强封装系统的整体性能和增加更多功能[38]。比利时校际微电子中心S.Brebels等人也实现了集成有福德正神的SoP[39]。但是,由于已经有SiP的概念,SoP的概念未被广泛接受。
稍后一些时间,香港城市大学梁国华教授及新加坡微电子研究所A.P.Popov博士分别独立发明基于介质谐振器福德正神的AiP技术[40],[41]。梁国华教授同我90年代初相识在香港中文大学微波实验室。当时他博士即将毕业,他的博士导师实际上是陆贵文教授。据说梁国华博士论文答辩时,答辩委员会主席认为他提交给中文大学的博士论文等于其它学校的两份博士论文。梁国华教授后来被任命为IEEE福德正神与传播汇刊的主编。也听说陆贵文教授当年在香港大学提交的硕士论文被英国伦敦大学一位国际著名的教授认为是一篇优异的博士论文,建议香港大学直接授予陆贵文博士学位。陆贵文教授获2017年度IEEE福德正神与传播学会the John Kraus Antenna Award。加上曾经长期在香港中文大学及城市大学工作过的李啟方教授于2009年获the John Kraus Antenna Award,微带福德正神的研究至少已产生了三位获奖者。
2.2 中期与60GHz无线技术及毫米波雷达一起成长2005年三月初,在新加坡举办的第一届小型福德正神国际研讨会(International Workshop on Small Antenna Technology)上, 我第一次见到了来自IBM Thomas J. Watson Research Center的Brian Gaucher先生和刘兑现博士,并邀请他们访问了南洋理工大学。Brian就IBM的60GHz SiGe芯片、福德正神、封装和测试设备做了学术报告。图3为IBM用于概念验证的60GHz芯片照片。SiGe裸芯片通过倒装焊技术与福德正神连接、封装成为栅格阵列模块。由于需要在封装内加金属墙及封装上开福德正神窗口,因此该概念封装福德正神不易大批量生产。 我向Brian Gaucher先生和刘兑现博士简要介绍了几款基于LTCC工艺适合批量生产的2.4GHz和5.2GHz频段的封装福德正神。双方当场就达成了基于LTCC工艺合作开发用于IBM 60GHz SiGe芯片组的封装福德正神的可行性研究计划。我和我的学生孙梅博士负责设计工作,邀请新加坡制造技术研究所(SIMTech)的一个研究小组负责LTCC加工,刘兑现博士负责评估并向我反馈测试结果。
image.png

图3. IBM公司用于概念验证的60GHz SiGe芯片、福德正神、封装模块照片
早期在封装上集成福德正神,所用英文名称五花八门。随着开发的深入我意识到一个专门响亮的名称非常有利于去推广它。2006年起,我首先使用Antenna-in-Package的名称去推广这一新颖的福德正神解决方案。采用Antenna-in-Package(AiP)而不是Antenna-on-Package (AoP) 主要考量是前者更有可能使福德正神靠近芯片,减少互连损耗[55]。低插损的福德正神与芯片互连是毫米波AiP技术的一大挑战。2006年三月初,我参加了在美国纽约举办的第二届小型福德正神国际研讨会,并访问了IBM Thomas J. Watson Research Center,与刘兑现、U. R. Pfeiffer和Janusz Grzyb 博士讨论了AiP 技术问题。很遗憾,这次访问并没有见到已于2004年离开IBM的Thomas Zwick 博士。Thomas在开发探针式毫米波集成福德正神测试系统及AiP键合线互连方面做出了突出贡献。此次会面增强了双方合作,加速了AiP技术的发展。图4展示了设计阶段获取的截图和刘兑现博士评估和测试的基于LTCC加工的AiP样品。这一样品集成了共面波导馈线、准腔体、定向保护环、基板材料调制的槽福德正神。福德正神输入阻抗故意设计成容性的与芯片通过感性的键合线互连,结果令人满意,并在2007年三月英国剑桥举办的第三届小型福德正神国际研讨会上被授予最佳论文奖[32]。事实上,在赴英参会之前我在一次内部会议上就对孙梅博士及新加坡制造技术研究所的合作者预测到60GHz AiP技术论文会获奖。而且,还有一件有趣的事情,那就是在剑桥大学的演讲厅等待颁奖时,我在一张会议用纸上写了个便条,再一次预测有关AiP的工作将会赢得更高奖项。我也请刘兑现博士在便条上签了字,便条至今由我保管。果然不出所料,2012年我、孙梅、刘兑现和陆亿泷博士荣获当年IEEE 福德正神与传播学会谢昆诺夫论文奖(Sergei A. Schelkunoff Transactions Prize Paper Award)[43]。这是该奖项自1957年设立以来,亚洲研究者首次及至今唯一获此殊荣。谢昆诺夫是国际著名的电磁理论学家。他于1920年代初期从前苏联经我国移居美国。他在工程电磁场、福德正神理论、波导理论、电磁屏蔽等方面提出了许多定理、原理、概念、方法,做出了重要的贡献。他使应用数学焕发出光彩, 许多工作带有奠基性质。就经典电动力学方法(即量子理论以外领域)而言, 我国著名物理学家黄志询先生认为可以把他比作二十世纪的麦克斯韦[44]。

image.png

图4. LTCC 60GHz AiP设计时截图及实物照片
John Kraus是对福德正神做出卓越贡献的老一辈福德正神专家。IEEE福德正神与传播学会的the John Kraus Antenna Award就是用他名字命名的。Kraus发明的螺旋福德正神应用非常广泛,但他发明的栅格福德正神却鲜有应用[45]。孙梅博士在2008年发现栅格福德正神的网状结构非常适合于LTCC工艺,故将其应用于60GHz AiP设计中。紧接着Wolfgang Menzel等人将其应用于79GHz[2],陈梓浩等人将其应用于94GHz[46], Thomas等人将其应用于122GHz[47], 张冰等人将其应用于145GHz AiP设计中[48]。几乎快被人遗忘的栅格福德正神得以在AiP技术中发扬光大。Menzel教授是微带漏波福德正神的发明者,曾访问南洋理工大学并做了有关车载雷达中毫米波福德正神的邀请报告,期间与我们交流了关于栅格福德正神的设计方法。图5是孙梅等人利用LTCC工艺为IBM 60GHz SiGe 接收机裸芯片设计的AiP。它采用了键合线球栅阵列(BGA)封装结构集成了14个网格的栅格福德正神,尺寸为13.5×8×1.265 mm3。 刘兑现博士测试了AiP的福德正神性能并给我发送了电子邮件,邮件中只写了两个字“excellent results”。确实,结果表明栅格福德正神具有频带宽、辐射效率高的优点,且在57GHz至64GHz频率范围内主波束辐射都在天顶方向,在60GHz频段最大增益可达到14.5dBi[49],代表了当时最好的60GHz AiP设计。

image.png

图5. LTCC 60GHz AiP实物照片
AiP技术的成功主要归功于人们重拾了对60GHz无线系统的研究与开发兴趣。2007年标志着AiP技术发展进入新的阶段。IEEE开始着手制定60GHz频带标准,很多企业开始重视60GHz芯片及封装福德正神的研发。美国SiBEAM公司第一个将60GHz福德正神阵与CMOS裸芯片利用LTCC工艺集成在一起,引入消费市场,用于高清视频内容的无线传输[50]。图6是SiBEAM公司60GHz芯片的照片,集成的微带福德正神阵清晰可见。值得一提的是,我在2005年9月22-23日美国加州圣克克拉市举办的福德正神系统和短程无线会议上做主题演讲后,休息之余,与SiBEAM的创始人之一以及毫米波CMOS电路先驱者C.H.Doan先生热情地讨论了一些有关基于LTCC封装福德正神集成的问题[51]。

image.png

图6. Sibeam公司60GHz LTCC封装福德正神CMOS芯片实物照片
2010年,美国IBM公司公布了用于60GHz相控阵系统的完整AiP方案[52]。如图7所示,基于LTCC工艺,16个矩形微带福德正神被集成在BGA封装中,发射或接收裸芯片通过倒装焊技术与AiP相连。AiP尺寸为 28×28×1.47 mm3,在四个IEEE802.15.3c通道中,福德正神单元增益均可以达到5dBi。2011年,IBM还展示了另外一个用于60GHz相控阵系统的基于有机材料高密度互连工艺(HDI)的完整AiP方案[53]。值得一提的是IBM与封装材料及工艺商通过努力实现了在AiP中嵌入空气腔体来改善微带福德正神阻抗及辐射特性。

image.png

图7. IBM公司 60GHz LTCC封装福德正神 SiGe芯片实物照片
2011年,韩国Samsung公司发表了用于60GHz相控阵系统的完整AiP方案[20]。如图8所示,基于LTCC工艺,24个圆形微带福德正神被集成在BGA封装中,发射或接收裸芯片可以通过倒装焊技术与AiP相连。为了避免像IBM公司那样在AiP中嵌入空气腔体来改善微带福德正神阻抗及辐射特性可能带来的可靠性问题,Samsung公司AiP设计采用了圆形叠层微带福德正神。 AiP的尺寸为20×15×1.02 mm3,实现了9GHz带宽及14.5dBi增益。Samsung公司还分别在2012和2013年提出了用于60GHz相控阵系统的基于低成本FR4材料与HDI工艺的完整AiP方案[21] [23]。 叠层微带福德正神有助于满足HDI工艺对金属密度的要求。Samsung公司AiP技术主要贡献者是一位名叫Wonbin Hong的年轻学者,我们经常通过电子邮件及在国际学术会议上交流AiP技术方面的心得。后来Hong博士率先在国际上报道了28GHz 5G手机福德正神方面的工作,引起福德正神界的关注。
image.png

图8. Samsung公司集成了24个福德正神的AiP实物照片
2012年,美国英特尔(Intel)公司发表了用于60GHz相控阵系统的完整AiP方案[54]。如图9所示,基于LTCC工艺,36个矩形微带福德正神(含4个哑元)被集成在BGA封装中,收发裸芯片通过倒装焊技术与AiP相连。AiP尺寸为25×25×1.4 mm3,在60GHz频段,±30o扫描范围内增益达19dBi。针对60GHz相控阵系统,英特尔还分别在2013年、2014年和2015年提出利用PCB[55]、玻璃[63]和液晶聚合物(LCP)[56],[57]实现低成本低损耗AiP解决方案。
image.png

图9. Intel公司60GHz LTCC封装福德正神 CMOS芯片实物照片
2015年,美国谷歌(Google)公司首次公开亮相的手势雷达名震四海。手势雷达使用60GHz信号来快速追踪人手移动,精度可以达到亚毫米级。也许对我而言,最振奋人心的就是AiP技术被应用于手势雷达芯片,如图10所示,德国英飞凌(Infineon)公司利用嵌入式晶圆级封装(eWLB)技术,在AiP中集成了一个60GHz SiGe 收发裸芯片、两个用于发射的差分微带福德正神和用于接收的四个单端口微带福德正神[26]。AiP的尺寸为14×14×0.8 mm3,显而易见,其尺寸已经足够小可用于穿戴设备。并且对于很多如智能手表、手机和其它装置而言,手势雷达作为用户界面潜力巨大。
image.png

图10.Google公司60GHz eWLB封装福德正神 SiGe芯片实物照片
几乎所有主要的日本电子公司都开发出了适用于60GHz应用的芯片组和AiP方案。图11所示的是日本NEC公司早期开发的60GHz接收机模块及NTT公司近期开发的60GHz收发模块。两家公司分别用不同的LTCC工艺在模块中集成了缝隙福德正神及抛物面福德正神[60],[61]。

image.png

图11.NEC公司和NTT公司60GHz LTCC封装福德正神GaAs芯片实物照片
像AiP技术用于谷歌手势雷达中一样,英飞凌公司也为77GHz车载雷达研制了SiGe芯片组及基于eWLB工艺的AiP技术,并自2016年6月以来就同比利时校际微电子中心合作开发基于28nmCMOS的芯片组和基于低成本低损耗PCB工艺的AiP技术,用于79GHz车载雷达[58]。比利时校际微电子中心负责AiP技术开发的是Guy A. E.Vandenbosch教授。Vandenbosch教授每次来中国讲学,都会在演讲前向学生们赠送著名的比利时巧克力,很受学生们欢迎。IBM公司将其AiP技术的工作频段推进到94GHz,并在2014年实现了用于W波段的可扩展相控阵系统的SiGe芯片及完整AiP解决方案。如图12所示,该AiP设计采用多层有机基片及高密度互连工艺(HDI)集成了64个双极化叠层微带福德正神和36个哑元,其尺寸为16.2×16.2×0.75 mm3。
image.png

图12. IBM公司 94GHz HDI封装福德正神 SiGe芯片实物照片
在欧盟科技委员会的赞助下,SUCCESS合作团体从2009年11月至2013年5月,基于SiGe工艺开发了如图13所示的122GHz及145GHz雷达芯片,且用键合线将它们分别与福德正神阵列集成在8mm见方的扁平无引脚(QFN)封装内[59]。 图14是奥德利JKU在欧盟科技委员会、英飞凌等公司赞助下于2013年10月报道的基于SiGe工艺开发的160GHz雷达芯片及基于eWLB工艺将芯片与福德正神阵集成在BGA封装内[30]。
image.png

图13. 122及145GHz封装福德正神SiGe芯片实物照片

image.png

图14. 160GHz eWLB封装福德正神SiGe芯片实物照片
2.3 近期助力太赫兹、物联网和5G移动通信发展太赫兹(THz)技术是改变未来世界的重要技术,已引起各国政府的重视。在日本政府的支持下,NTT、NICT和FUJITSU都参与到世界上第一个使用300GHz无线链接的收发信机研发工作中。NTT成功研发了如图15所示用于300GHz发射机芯片的AiP结构。该AiP设计采用LTCC工艺,其中喇叭福德正神尺寸为5×5×2.7 mm3,最大实现增益为18dBi,带宽达100GHz[62]。
image.png



图15. NTT公司300GHz LTCC封装福德正神实物照片
物联网(IoT)是互联网发展的新阶段,它通过智能感知、识别技术与普适计算等手段实现万物互联。最近,美国Silicon Labs公司发布了如图16所示的世界上最小的蓝牙无线系统,它的封装内集成有福德正神,尺寸只有6.5×6.5×1.5 mm3,这使得设计真正紧凑的物联网设备变得可行[63]。

image.png

图16. Silicon Labs公司的蓝牙CMOS芯片内置封装福德正神实物照片
AiP技术是近期国际上5G移动通信研发的一个重要课题,难点是如何实现高辐射效率及低成本量产。图17为IBM应用于未来5G基站28GHz AiP照片[64]。该AiP包含4个单片SiGe裸芯片和64个双极化福德正神,尺寸约为7.1×7.1cm2。刘兑现博士是IBM公司所有AiP设计背后的灵魂人物,他指出相控阵列福德正神的并行双极化运作方式能够形成两个波束支持低于1.4度的波束扫描精度,同时保持发送和接收模式,进而使服务的用户量增加一倍。

image.png

图17. IBM公司 28GHz HDI封装福德正神 SiGe芯片实物照片
图18为Qualcomm近日发布的用于5G NR 首款智能手机参考设计中采用的28GHz毫米波芯片[65]。参考设计旨在于手机的功耗和尺寸要求下,对5G技术进行测试和优化。该芯片福德正神方案采用AiP技术,尺寸约为5美分大小。Qualcomm希望能在一年内将尺寸缩小一倍。

image.png

图18. Qualcomm公司用于5G NR 首款智能手机参考设计中采用封装福德正神技术的的28GHz毫米波芯片实物照片
3. 结束语不知不觉AiP技术已走过了多年发展历程。早期AiP技术的研究主要集中在大学实验室,围绕着2.4GHz蓝牙芯片展开。如何实现福德正神小型化是当时AiP研究者所面临的技术难题。中期AiP技术的开发主要集中在大公司,围绕着60GHz芯片及毫米波雷达展开。如何实现宽频带、高增益福德正神及芯片与福德正神低损耗互连是中期AiP开发者所面临的挑战。中期也是AiP技术茁壮发展的阶段,很多大公司投入大量人力物力开发适合于AiP设计的新材料和新工艺,实属罕见。据我所知,也只有在1970年代微带福德正神曾获得过如此瞩目与投入。近期AiP技术的研发一方面向更高的频率扩展,另一方面正围绕着IoT及毫米波移动通信5G芯片如火如荼展开。更高频率AiP技术的关键在于材料损耗及工艺精度,5G AiP技术的难点是如何实现高辐射效率及低成本量产。
如今AiP技术不仅仅被工业界广泛采用,也已从学术界福德正神领域扩散到集成电路、封装、材料与工艺、微波、雷达及通信等领域。这一点既可以从发表AiP技术相关文章的刊物看出,也可以从不同领域作者出版的书籍中窥到。比如国际著名的无线通信专家美国纽约大学Theotores S. Rappaport教授不仅在他发表的新书毫米波无线通信中专门详细介绍AiP技术,也在很多无线通信类国际学术会议的主题演讲中用我们的AiP设计作为例子阐述封装福德正神的优点[64]。再比如以前在射频集成电路工程师眼中,福德正神只不过就是一片金属,现在他们意识到没有好的福德正神解决方案,设计再好的射频集成电路也就是一块石英。另外,IEEE微波理论与技术学会比福德正神与传播学会对推广AiP技术更加积极,几年前几乎在同一时段选择任命了两位杰出讲师讲授AiP技术。一位是德国Karlsruhe Institute of Technology 的 Thomas Zwick教授[65],另一位是奥地利Johannes Kepler University的Andreas Stelzer教授[66]。同时在一个题目上任命了两位杰出讲师,在IEEE微波理论与技术学会历史上是前所未有的。德国Karlsruhe Institute of Technology是Heinrich Rudolf Hertz 1887发现电磁波的地方,Thomas Zwick教授是IBM Thomas J. Watson Research Center前雇员,在AiP设计、制造及测试方面做出过突出贡献。 Andreas Stelzer教授由于在SiGe毫米波雷达芯片设计方面的贡献获2011年度IEEE微波理论与技术学会微波奖,在基于eWLB工艺开发差分AiP技术方面的贡献获首届IEEE亚太福德正神与传播年会最佳论文奖。
自20世纪90年代末,我有幸参与并推动了AiP技术在国内外的发展。早在2001年我就同上海交通大学毛军发教授团队就AiP技术进行学术交流。毛军发教授团队在三维系统级集成及多物理场仿真方面经验丰富、硕果累累。自行开发的热仿真软件对分析AiP热效应及散热设计非常有用。近期毛军发教授团队与电科41所合作建成了我国第一套从50GHz(为适应5G高频段福德正神测试已经向下扩展到18GHz)到325GHz(为适应THz频段福德正神测试可扩展到500GHz或更高)集成福德正神远场自动测试平台。该测试平台达到世界先进水平,支持探针及波导馈电,110GHz以下也可用同轴馈电。该测试平台已为国内多家科研院所的研究项目及公司产品开发提供了测试服务,极大地助进了我国在片上福德正神及封装福德正神方面的研究与发展。在国家各种科研计划的支持下,清华大学冯正和教授团队,东南大学洪伟教授团队、崔铁军教授团队,香港城市大学薛泉教授团队,香港城市大学梁国华教授团队,浙江大学尹文言教授团队,山西大学张文梅教授团队都对AiP技术发展做出了积极贡献。张文梅教授曾两次应邀在新加被南洋理工大学进行长期学术访问与讲学。张文梅教授2008年回国后率先在国际上开展了用滤波器综合方法设计滤波福德正神。滤波福德正神目前是国际上微波与福德正神领域的一个研究热点,华南理工大学褚庆昕教授团队、章秀银教授团队分别在滤波福德正神的设计方面做出了突出贡献。我国公司尽管在AiP技术开发方面起步比较晚,但得益于后发优势,60GHz AiP技术与相关芯片研发已取得重大突破,在交大测试平台多次所做的相控阵、大规模MIMO辐射测试获得令人满意的效果。毫米波频段5G移动通信AiP技术也已取得进展。
最后,让我将AiP与基片集成波导(SIW)联系起来结束这篇回顾文章。我在2016年南京举办的华人微波论坛上讲过,吴柯教授及洪伟教授的合作将SIW技术做成微波领域的国际主流,我同刘兑现博士一起努力让AiP技术在国际福德正神领域引起人们的重视。我俩在相距很近的黄河东西岸边的乡村出生长大,相识却在远隔万里的南洋,珠联璧合,开创出封装福德正神一片天地,并且三次携手登上国际福德正神领域的颁奖舞台,成就了一个小小奇迹,一段佳话。另外,我们几位都是77、78级大学生, 我们的名字有着鲜明的时代特征,伟大的跃进,可否兑现?我想我们没忘初心,兑现了父辈的期望及我们自己的选择!
致谢
太原理工大学盛剑桓教授,香港中文大学黄振峰博士,香港中文大学程伯中教授,南洋理工大学杜茂安教授。
福德正神
因为引用文献众多,参考文献将会在系列文章最后的文献篇中给出。
作者简介
张跃平博士,新加坡南洋理工大学电子工程学讲座教授,IEEE Fellow,IEEE福德正神与传播学会杰出讲师,上海交通大学“千人计划”国家特聘专家。曾任IEEE福德正神与传播汇刊副主编及福德正神与传播领域评奖委员会委员。曾荣获IEEE福德正神与传播学会谢昆诺夫论文奖。目前研究兴趣主要集中在无线电电子学。



全方位总结AiP技术在过去不到一年的时间内所获得的最新成果

来源:微波射频网

 

1引言

作者去年发表的《封装福德正神技术发展历程回顾》一文讲述了封装福德正神技术早期与蓝牙无线技术一起发芽,中期与60GHz无线技术及毫米波雷达一起成长,近期助力太赫兹、物联网和5G移动通信发展的故事[1]。时间跨度从1990年代末到2017年10月底约20年。在文中作者指出近期AiP技术开发正围绕着万物互联(IoT)及毫米波5G移动通信与汽车雷达芯片如火如荼展开。到目前为止,仅仅几个月时间就不断有新的成果或以新闻形式发布及媒体采访报道、或以研讨会方式面对面及在线交流、或以技术论文正式出版发表与同行分享。本文尝试全方位总结2017年10月以后到现在AiP技术在国内外取得的最新成果。此外,本文也是作者介绍封装福德正神技术系列文章的第二篇:谱新篇。文章首先从新闻发布、媒体报道及市场分析报告角度出发关注当前AiP技术热点,接着追踪研讨会、捕捉AiP技术新的发展动向,然后重点介绍AiP技术在材料、工艺、设计、测试等方面的新进展。

2从新闻发布、媒体报道及市场分析报告角度出发关注当前AiP技术热点

新闻发布追求轰动效应,所以选择发布的时间点及场所就显得相当重要。消费类电子产品新闻发布首选时间与场地是每年1月在美国内华达州拉斯维加斯召开的国际消费类电子产品展览会(CES)。移动通信类电子产品新闻发布则会选在每年2月在西班牙巴塞罗那召开的世界移动通信展览会(MWC)。近年来,我国许多公司包括著名的华为及中兴公司都积极在CES与MWC参展,并且在会上发布年度重要产品新闻。华为公司余承东先生自信地用英语发布新闻让人印象深刻,达到了提高品牌知名度、提升产品在消费者心目中的地位,增加公司营销、扩大公司产品在市场占有率的目的。媒体报道力求图文并茂、吸人眼球、引人注目。市场分析报告在于能够洞悉行业市场变化,把握市场机会,借以提供公司参考,推动市场开发工作。最近或许受到越来越多令人鼓舞的AiP技术方面进展报道的影响,作者自豪地憧憬着AiP技术能够很快地造福人类,海量的用在人们的手机内、驾驶的汽车上,把玩的虚拟现实(virtual reality)及增强现实(augmented reality)等随身电子产品中。下面作者从新闻发布、媒体报道及市场分析报告的角度出发关注当前毫米波AiP技术热点。

2017年12月21日是可以载入移动通信史册上的一天。高通(Qualcomm)公司利用自己开发的基带芯片、毫米波芯片与AiP技术,制成了5G毫米波通信用户终端参考设计样机,与爱立信(Ericsson)公司预商用毫米波基站实现了世界上第一次基于5G 新无线电(New Radio(NR))标准的不同厂商产品的互连互通,奠定了2019年毫米波5G移动通信正式商用的基础[2]。图1是高通公司毫米波5G通信用户终端参考设计样机实物照片。如图所示,3个工作在28GHz的AiP清晰可见,另外一个AiP位于PCB右下角背面。每一个AiP都可以实现快速波束扫描,方便地安装在用户终端的不同地方。

image.png


图1、高通公司毫米波5G通信用户终端参考设计样机实物照片

迈入2018年,海思(HiSilicon)率先于1月9日在中国深圳宣布Hi1181 60GHz系统级芯片成功通过WiFi联盟WiGig认证,成为业界集成度最高,性能最佳的60GHz系统级芯片(SoC)。为了满足市场应用需求,海思基于Hi1181 SoC开发了两款设计。一款称之为M1181超能模块,另外一款称之为M1181超强模块。M1181超能模块采用先进AiP技术,外形紧凑,10毫米见方,适用于超宽带无线视频传输。M1181超强模块同样采用先进AiP技术,双极化16收16发,12毫米见方,适用于无线虚拟现实[3]。

联发科技(MediaTek)于1月12日在CES上接受电子工程杂志(EE Times)专访时披露了研发的基于互补金属氧化物半导体(CMOS)及AiP技术研发的毫米波汽车雷达芯片。该芯片工作频段位于76-81GHz,用于探测10到15米的障碍物。图2是联发科毫米波汽车雷达实物照片[4]。此外,联发科也于2月25-28日在MWC上展示了基于5G毫米波NR通信标准的用户终端参考设计样机。图3所示是样机背面装有AiP的部分,该AiP集成了8个福德正神和2个芯片形成一个工作在28GHz的相控阵。另外一个相同的AiP装在样机正面接近顶部的位置,且与样机背面的AiP成90度角,实现极化分集[5]。


image.png


图2、联发科技毫米波汽车雷达实物照片

image.png


图3、联发科技毫米波5G通信用户终端参考设计样机实物照片

英特尔(Intel)公司在开发CMOS毫米波芯片与AiP技术方面着力很早,成绩斐然。它于2月25-28日MWC上发布了基于5G毫米波NR通信标准,用于许多场景的解决方案。尤其是将5G毫米波芯片与AiP技术应用于车联网令人耳目一新、印象深刻。图4是英特尔公司基于5G毫米波NR通信标准的车联网车载系统去掉防护罩后的实物照片。该车载系统装在车顶,使用4个AiP实现水平360度覆盖。每个AiP集成了16个福德正神和1个芯片形成一个相控阵,工作在28GHz频段。系统可以在4个AiP中进行切换,波束选择等[6]。

image.png


图4、英特尔基于5G毫米波通信标准的车联网实物照片

作者原先预计AiP的制造与测试会主要由半导体封装测试厂家(OSTA)完成。日月光(ASE)、Amkor、 长电科技(JCEP)及矽品(SPIL)是全球OSTA四强,都有在开发AiP技术。但現在看来半导体集成电路制造公司,如台积电(TSMC)及三星(Samsung)公司等,受即将爆发的5G的巨大潜力所吸引很可能会捷足先登,抢先占领5G AiP技术市场。半导体集成电路制造公司仅需要面对为数不多的芯片设计(Fabless)公司, 封装测试厂家仅需要面对为数更少的半导体集成电路制造公司。它们的新闻发布一般会选在自己主办的年度技术论坛上。比如台积电于今年5月1日在美国加州硅谷召开的年度技术论坛宣布,成功开发出晶圆级扇出式封装福德正神(InFO-AiP)技术,号称外观尺寸可缩小10%,天线增益可提高40%,锁定5G毫米波前端芯片应用[7]。三星5月22日在美国加州硅谷召开的年度先进封装技术推介会上强调,为了支持毫米波5G通信产品开发需求,三星封装天线(AiP)技术也会及时推出[8]。

Yole公司是一间总部位于法国里昂,打着“超越摩尔”口号的世界知名市场研究与战略咨询公司,与我国相关企业合作紧密,关系良好。它的市场分析报告因为能够帮助客户深入地理解市场与技术发展方向的密切关系,成功拓展商务而在业界广受好评。Yole公司去年年尾出版了3份市场分析报告:(1)5G对射频前端产业影响 “5G’s Impact on the RFFront-End Industry”,(2)手机先进射频系统级封装 “Advanced RF System-in-Package for cell phones”,(3)2018年度汽车雷达技术 “Radar Technologies for Automotive 2018”。三份报告都反复强调AiP技术会是毫米波5G通信与汽车雷达芯片必选的一项技术[9]。图5摘取于报告(3),可以清楚看见AiP技术已经是毫米波汽车雷达主流天线与封装技术。此外,作者提出的Antenna-on-Chip (AoC)思想也被报告引用将会在未来THz成像雷达方面应用。

image.png


图5、毫米波汽车雷达发展路线图

总而言之,市场是技术发展最重要的推动力,AiP技术发展也不例外。根据上述三方面所披露的信息,作者发现开发适用于毫米波5G通信用户终端的AiP技术是目前大家最关注的热点。

3追踪研讨会、捕捉AiP技术新的发展动向

AiP技术将天线触角伸向集成电路、封装与测试、材料与工艺、雷达及通信等领域,倡导多学科协同设计与系统级优化,受到了其它学科的重视,起到了扩展天线领域的作用。此观点很容易从上述不同领域举办的研讨会上得到验证。下面作者开始追踪今年到现在不同领域举办过的研讨会,去捕捉AiP技术新的发展动向。首先将目光投向今年2月11-15日在美国旧金山召开的国际固态电路大会(http://isscc.org/2018/),然后转向于4月9-13日在英国伦敦召开的欧洲天线与传播大会(http://www.eucap2018.org/),接着再转向于5月29日至6月1日在美国加利福尼亚州圣地亚哥召开的电子元件与技术大会(https://www.ectc.net/), 之后聚焦于6月10-15日在美国宾夕法尼亚州费城召开的国际微波大会(https://ims2018.org/), 最后定格于7月8-13日在美国麻萨诸塞州波士顿召开的天线与传播大会(https://2018apsursi.org/)。

3.1 国际固态电路大会(ISSCC)

ISSCC由IEEE固态电路学会举办,俗称芯片奥林匹克(Chip Olympia),是集成电路设计领域最顶级的会议。去年IBM公司的AiP技术在会上一枝独秀,今年AiP技术在会上百花齐放。英飞凌(Infineon)公司AiP技术加持的谷歌(Google)60GHz手势雷达,经大会层层筛选,亮相于大会首次举办的行业展示(Industry Showcase)。在5G与后续移动通信的毫米波无线电系统分组会(S4: mm-Wave radios for 5G and beyond)上宣读的7篇文章中,4篇公司的文章都介绍了各自公司开发的AiP技术,3篇大学的文章中有2篇简单提到AiP技术,1篇涉及到片上天线(AoC)技术。在毫米波多天线系统中的电路设计与系统架构论坛(F4:Circuit and system techniques for mm-Wave multi-antenna systems)上9位演讲的嘉宾中至少有5位在他们的演讲中讲到AiP及其相关技术。限于篇幅,下面仅简单介绍博通(Broadcom)60GHz、(高通(Qualcomm)28GHz、诺基亚(Nokia)与LG公司90GHz AiP技术。

图6a所示的是博通公司60GHz系统,由主从60GHz芯片组成,便于系统重构。主从芯片通过系统板上布线互连,从芯片的封装上集成了天线。主从芯片设计基于CMOS工艺,从芯片的封装与天线采用低温共烧陶瓷(LTCC)AiP技术。图6b所示为每个AiP集成了48个天线和2个芯片形成一个相控阵的实物照片。图6c所示每个天线是由带状线馈电、槽耦合激励的1驱4从微带天线。图6d所示的展示系统使用1主6从芯片,总共有288个天线,该展示系统最大等效全向辐射功率为51dBm,可实现±60°扫描[10]。

image.png


(a)

image.png


(b)

image.png


(c)

image.png


(d)

图6、博通60GHz系统采用基于低温共烧陶瓷的AiP技术

图7a与b分别是高通公司为5G移动通信系统用户终端及微基站开发的工作在28GHz频段的芯片与AiP示意图。用户终端AiP集成了8个顶射双极化叠层微带天线、8个端射振子天线及2个芯片形成一个相控阵。微基站AiP集成了16个顶射双极化叠层微带天线、8个哑元及2个芯片形成一个相控阵。图7c是AiP实物的背面照片,两个倒装焊的芯片清晰可见。图7d与e分别是高通公司为5G移动通信系统开发的用户终端及微基站参考设计实物照片。用户终端上使用4个AiP, 3个位于PCB正面,1个位于PCB右下角背面。实测表明每一个AiP上的8个顶射双极化叠层微带天线阵及4个振子阵都可以实现±45°快速波束扫描。微基站上使用20个AiP,位于黑线框内是有源的,框外是无源的。有源部分可以看作为32×8个单元阵,形成2个32×4子阵。实测表明微基站可以实现双极化±60°快速波束扫描[11]。

image.png


(a)

image.png


(b)

image.png


(c)

image.png


(d) 

image.png


(e)

图7、高通毫米波5G通信系统采用基于高密度互连的AiP技术

图8a是诺基亚与LG公司90GHz AiP示意图。它集成了25个叠层微带天线,其中16个用于发射,8个用于接收,1个哑元,发射与接收都可以实现±45°快速波束扫描。图8b是AiP实物照片。图8c与图8d是使用了16个AiP形成的256个单元发射阵及128个单元接收阵的系统板,及放在具有散热功能机箱中的实物照片。该系统最大等效全向辐射功率为59.5dBm [12]。

image.png


(a)

裸片

image.png


(b)

image.png


(c)

image.png


(d)

图8、诺基亚与LG公司90GHz系统采用基于高密度互连的AiP技术

3.2   欧洲天线与传播大会(EuCAP)

英国伦敦在天线人心目中有着无与伦比的地位。过去麦克斯韦先生(James C. Maxwell)在伦敦国王学院推导出麦克斯韦方程,预测到电磁波的存在。当代彭德里爵士(John B. Pendry)在帝国学院提出超构材料的思想,指导操控电磁波。2018年EuCAP于4月9-13日在伦敦召开,西安电子科技大学段宝岩院士应邀作大会主旨报告。段宝岩院士是作者的老朋友,我们于1991年相识在英国利物浦大学。当时,段宝岩院士在利物浦大学作博士后,我在作访问学者。段宝岩院士大会主旨报告着重介绍了中国天眼艰苦的研制过程,报告内容丰富,演讲相当精彩,受到与会者的广泛好评。段宝岩院士应该是第一位中国天线人受邀在如此重要的天线与传播旗舰会议上作主旨发言。东南大学洪伟教授应邀作大会特邀报告。

洪伟教授介绍了中国5G研制已取得的成果及后续任务。洪伟教授作为中国5G推进组组长在报告中明确指出封装天线因为在毫米波通信方面的重要性已列入推进组计划。另外还有一个大会特邀报告是讲毫米波封装天线与电路系统的设计。主讲者是法国尼斯大学的一位教授,曾同作者合作过研发基于LTCC的AiP技术。

此外,值得一提的是作者在大会上组织了毫米波与5G封装天线技术专题研讨会 ,邀请到了中国、韩国、芬兰、法国、德国、荷兰与比利时对封装天线技术发展做出过贡献的专家同大家分享他们宝贵的经验[13]。专题研讨会受到与会者热烈欢迎与参与,会场座无虚席,许多听众不得不站在后面和旁边听讲。在专题研讨会上意法半导体(ST Microelectronics)公司介绍的用3D打印实现的透镜可以大大地提高AiP增益的工作相当有趣。图9是工作在60, 120, 240GHz 频段的实物照片。3D打印的塑料透镜在60和120GHz频段使得由HDI工艺基于有机封装材料实现的AiP天线增益分别增加了8与12dB。由于受到HDI工艺的限制,240GHz频段的AiP性能不佳,但是,3D打印的塑料透镜还是可以让其增益增加了12dB [14]。

image.png


(a)

image.png


(b)

image.png


(c)

图9、意法半导体公司毫米波AiP及3D打印透镜天线

3.3   国际电子元件与技术大会(ECTC)

ECTC由IEEE电子封装学会举办,是封装、元件、微电子系统领域最顶级的会议。封装天线技术被认为是封装产业链新的增长点,所以理所当然地受到半导体封装测试厂商的重视。今年ECTC上电子封装学会下属的的高速、 无线与元件技术委员会组织了一个分会专门研讨射频与毫米波AiP技术(Session 5: Antenna-in-Package for RF and mm-Wave Systems) [15]。除了日本东芝(Toshiba)公司宣读的射频2.4GHz封装天线文章以外,其余6篇都在探讨毫米波AiP技术。作者很高兴地读到由日月光、台积电、矽品公司工程师们撰写的文章。他们都是封装设计的行家,对封装材料特性与加工工艺了如指掌。日月光与矽品都是半导体封装测试领域龙头企业,台积电是半导体集成电路制造行业老大,封装测试行业后起之秀。用台湾同行的话讲有这些先进们的介入本身就表明AiP技术发展迈入新阶段,进入快车道。

日月光的文章着重介绍了为77GHz汽车雷达开发的低成本先进的单边基片(aS3-AiP)技术及加工容差对天线特性的影响。本文作者认为文章的更重要的价值在于日月光工程师们科学地、客观地比较了几种典型封装技术从芯片到封装再到系统板的过渡损耗后,指出尽管晶圆级扇出式封装技术具有过渡损耗小的优点,先进的单边基片封装技术除了成本较低,而且过渡损耗可与晶圆级扇出式封装技术媲美,在77GHz汽车雷达应用方面具有优势[16]。

台积电的文章介绍了用于高性能紧湊型毫米波5G通信系统集成的晶圆级扇出式(InFO-AiP)技术。台积电的工程师们设计的通过共面波导槽耦合激励的微带天线实测表明能够实现覆盖55-65GHz频段的目标。本文作者相信InFO-AiP技术具有尺寸小、低剖面等优点,但是从文章中无从得知台积电在新闻发布时提到的天线增益可提高40%是如何而来。本文作者猜想可能是与晶圆级扇出式封装所选用的材料及加工工艺所带来的损耗小有关[17]。

有感于目前基于HDI材料与工艺开发的AiP技术都采用平衡式基片,矽品工程师们认为如果能够解决基片翘曲的问题,非平衡式基片在成本方面更有优势。矽品的文章从设计、制造、测试等方面详细地介绍了矽品如何克服非平衡式基片翘曲的难题,以及为毫米波5G通信用户终端开发的AiP技术。图10是矽品AiP实物照片。如图所示,矽品AiP集成了4个叠层微带天线,测试表明AiP在28GHz处实现了15.4%的带宽及10.8dBi的增益[18]。

此外,IBM公司宣读的文章、美国佐治亚理工学院宣读的文章以及中国国家先进封装工程中心、中国科学院微电子所系统封装与集成研究中心,中国科学院大学三家联合宣读的文章都针对毫米波AiP技术进行了有意义的探讨,本文作者强烈推荐对AiP技术感兴趣的读者阅读 [19-21]。

image.png


图10、矽品AiP实物照片。

3.4   国际微波大会(IMS)

IMS由IEEE微波理论与技术学会举办,是微波技术领域最负盛名的会议[22]。今年会议上有33个专题研讨会,其中3个专题研讨会与AiP技术直接相关:(1)毫米波系统制造、封装与内置自测试(WSJ: Millimeter-wave systems; manufacturing, packaging and built-in self test),(2) 面向5G用于增强型移动通信的射频前端(WFB: RF Front-Ends for Enhanced Mobile Communications towards 5G),(3)用于毫米波及5G通信领域的模组集成及封装与芯片协同集成(WFH: Module integration and packaging/IC co-integration for millimeter-wave communications and 5G)。在毫米波系统制造、封装与内置自测试研讨会上德国弗劳恩霍夫可靠性和微集成研究所(The Fraunhofer Institute for Reliability and Microintegration IZM)有关5G及毫米波应用的封装方法报告值得AiP技术人员学习。在面向5G用于增强型移动通信的射频前端研讨会上,英飞凌公司从系统角度阐述了基于锗硅双极互补式金属氧化物半导体(SiGe-BiCMOS)的毫米波5G通信用户终端有关AiP个数、布局及每个AiP上天线个数的考量。在用于毫米波及5G通信领域的模组集成及封装与芯片协同集成专题研讨会上除了耳熟能详的IBM及高通公司介绍他们各自开发的AiP技术以外,美国安森美半导体公司(ON Semiconductor)首次从设计、制造及测试方面介绍了它的毫米波AiP技术,令人印象深刻。图11是安森美半导体公司AiP实验样片的实物照片。如图所示,4个AiP集成在一个样片上。为了增加带宽,左上角AiP采用叠层微带天线,左下角AiP采用3个共面耦合微带天线,其余AiP采用2个共面耦合微带天线。测试表明这些AiP都可以应用在60GHz系统上[23]。

image.png


图11、安森美半导体公司AiP实物照片

3.5   国际天线与传播大会(APS)

APS由IEEE天线与传播学会举办,为了鼓励大家交流,会议投稿一般都会录用[24]。今年APS在美国学术名城波士顿举办。波士顿在天线人心目中有着崇高的地位,得益于两位天线高人在此工作与生活过。一位是朱兰成先生, 他在位于该城的麻省理工学院完成了他的传世名篇小天线理论。另一位是R. W. P. King 教授,他在位于该城的哈佛大学发明的倒F天线,极大地促进了手持移动终端的发展。

今年三星公司在APS上宣读了为5G开发的一款毫米波AiP设计及在客户端固定设备(CPE)真实应用环境下的测试结果。作者认为这是一款别出心裁的毫米波AiP设计, 为了降低成本及提高天线性能,16个空气介质的叠层微带天线安装在封装基板前面,毫米波芯片倒装焊在封装基板后面,金属散热片利用导热胶粘在毫米波芯片衬底上。AiP先经过独立测试发现具有4GHz带宽,最大增益在28GHz是17.3 dBi。然后利用两个AiP开发了客户端固定设备,整机测试表明最大等效全向辐射功率为36.6dBm,可以实现大于±40°的快速波束扫描[25]。

根据参加与追踪上述研讨会,作者发现目前AiP技术的开发主要集中在诸如高通及海思等芯片设计公司、台积电及三星等半导体集成电路制造公司、日月光及矽品等封装测试厂家。而且这些大公司正在不断地投入大量人力物力开发适合于AiP设计的新材料和新工艺,旨在实现高辐射效率及低成本量产。反观传统的天线公司,由于缺乏芯片与封装方面的能力,正在考虑或尝试着看如何介入。

4AiP技术在材料、工艺、设计、测试等方面的新进展

半导体封装材料与工艺是实现AiP技术的基础,测试是验证AiP性能是否达到设计指标要求的必要手段。毫米波通信与雷达系统对AiP技术的要求都给半导体封装材料与工艺及测试带来了很大的挑战,但也提供了巨大的商机。下面作者重点介绍毫米波AiP技术在材料、工艺、设计、测试等方面的新进展。

4.1   材料

封装天线介质材料主要有陶瓷、有机、模塑化合物三种,导体材料有金、银、铜三种。陶瓷材料是低温共烧陶瓷(LTCC)工艺必用的,典型代表是Ferro A6系列。最近,我国量子汇景公司属下晶材科技开发的陶瓷材料MG60介电常数为5.9±0.2,损耗角正切大约0.002,具有可与Ferro A6 相媲美的特性,但是价格却相对低廉。MG60 的生瓷带标准厚度为120µm, 标准宽幅规格为6英寸,8英寸;可依据客户要求进行定制。卷料、裁剪好的方形片料可供客户选择[26]。

有机材料在高密度互连(HDI)工艺中得到广泛应用,它的种类很多,比如有玻璃纤维环氧树脂(FR4)、液晶聚合物(LCP)、陶瓷填充聚四氟乙烯(RO4000)等[27-29]。在这些有机材料中,LCP具有良好的介质特性,标称介电常数为2.9,损耗角正切为0.003,非常适合于设计封装天线,而FR4则具有成本低廉的优势。

模塑化合物(molding compound)是晶圆级扇出式封装(FOWLP)工艺中再造晶圆的必用材料,近期也在尝试着用在设计封装天线上[30-32]。表1是两种模塑化合物的介电常数及损耗角正切。第一种模塑化合物的相关值是通过谐振法在24-36GHz频段提取出来的。第二种模塑化合物在不同频段相关值是通过自由空间法所得到。从表中可以看出,模塑化合物介电常数基本不随频率变化而变化,损耗角正切则随频率升高而增加。此外,在晶圆级扇出式封装工艺中还需用到聚合物介质,它的介电常数与模塑化合物相近,但损耗角正切一般高一个量级。

表1、模塑化合物介电特性

频率(GHz)

24-36

40-60

75-110

110-170

介电常数

3.34

3.61

3.62

3.61

损耗角正切

0.015

0.0045

0.0055

0.009

 

最近,无机材料比如玻璃也开始尝试着用在HDI工艺中作为封装天线的核心层介质材料。玻璃标称介电常数为3,损耗角正切很小。研究发现玻璃不仅比传统的核心层有机介质材料更加稳固及不易翘曲,而且可以做的更薄(30-100µm)及表面更光滑[33]。这样的特性非常有利于其支撑的其它电路层来实现良好的电性能。

4.2   工艺

封装天线工艺主要有LTCC,HDI及FOWLP三种。LTCC工艺是由IBM公司于1970年代初为其大型计算机芯片封装而开发的。后来经过多家公司几十年的发展,目前已经相当成熟,我国有多家公司及研究所提供LTCC加工服务。

HDI工艺已被许多公司采用开发毫米波封装天线[1]。图12所示的是IBM公司为毫米波5G通信系统开发的基于HDI工艺的AiP结构剖面图[34]。它由一个核心层(core)与上下对称的各5个介质层及6个金属层相互叠加构成,厚度为1.61mm。此外,LG与高通公司也分别发表了它们基于HDI工艺为毫米波5G通信系统开发的封装天线。LG公司的AiP由一个核心层与上下对称的各4个介质层及4个金属层相互叠加构成,厚度为0.8mm[35]。高通公司的AiP由一个核心层与上下对称的各3个介质层及4个金属层相互叠加构成,厚度略小于1.1mm[36]。

image.png


图12、IBM公司基于HDI工艺的AiP结构剖面图

如图12所示,传统HDI工艺核心层采用有机介质材料,为了防止整个结构发生翘曲,核心层厚度最少需要400µm。线宽与线距(L/S)取决于介质层及金属层的厚度,目前典型值L/S = 50/50µm。美国佐治亚理工学院系统级封装卓越研究中心研究人员建议核心层采用无机介质材料玻璃,厚度100µm就可以。而且在上下叠加层中金属线宽与线距可以做的更细,传输损耗可以更小。图13所示的是核心层采用玻璃及上下叠加层中金属走线的剖面图及实物照片[33]。

image.png


(a)

image.png


(b)

图13、美国佐治亚理工学基于玻璃核心层的AiP剖面图及实物显微照片

再如图12所示,传统HDI工艺为了防止整个结构发生翘曲,在核心层上下实行平衡式布局叠加层。矽品公司工程师建议增加核心层厚度实现叠加层非平衡式布局以利于低成本量产毫米波5G通信用户终端AiP。图14是矽品公司毫米波汽车雷达AiP剖面图实物显微照片。如图所示,AiP由4层金属及3层介质构成。金属层1-4分别用来实现被动微带天线片、主动微带天线片、封装天线地及封装天线馈电网络。馈电网络与主动微带天线片互连通过盲孔实现[18]。

image.png


图14、矽品公司毫米波汽车雷达AiP剖面图事物显微照片

FOWLP工艺不同于LTCC或HDI工艺,它不再需要叠层基片,转而用模塑化合物、 重新配置金属与介质层代替。FOWLP工艺最早是由英飞凌公司研发的,称之为嵌入式晶圆级封装工艺(eWLB)。图15所示的是焊接在系统PCB 板上的eWLB工艺可以实现的封装结构。一般情况下裸芯片被嵌入在厚度为450μm,介电常数为3.2,损耗角正切为0.004的模塑化合物中。保护层厚度为35μm,介电常数为3.2,损耗角正切为0.004。在裸芯片的扇入区以及封装的扇出区涂有介质层D1,起到保护裸芯片的的作用,D1层的厚度为6.5μm,介电常数为3.2,损耗角正切为0.035。重新配置的导体层(RDL)是沉积厚度为7.5μm的铜,用于实现连接线或天线。阻焊掩模层D2用于定义焊球的着落焊盘,其厚度为9.5μm,介电常数为3.2,损耗角正切为0.035。目前使用的焊球直径为0.3mm,间距为0.5mm。谷歌(Google)公司的60GHz手势雷达第1及第2版芯片都采用了基于eWLB工艺设计的AiP。图15也展示了第2版手势雷达芯片及AiP显微照片。图中微带天线辐射片由RDL金属层实现,微带天线地则由系统板上的金属层实现[37,38]。

image.png


(a)

image.png


(b)

图15、eWLB封装剖面图及谷歌手势雷达芯片及AiP实物显微照片

显然eWLB工艺因为仅有1层金属,不利于AiP天线设计。为了使得FOWLP工艺适合于AiP设计,台积电开发出的InFO-AiP技术在模塑化合物上面增加了一层金属。如图16所示,微带天线辐射片由模塑化合物上面增加的那一层金属实现,微带天线地、馈线及耦合槽则在RDL金属层来实现[17]。

image.png


图16、InFO-AiP结构剖面图

新加坡微电子研究院(IME)在eWLB的基础上增加了一层模塑化合物、一层金属及穿过原来模塑化合物与RDL相连的盲孔(TMV)实现毫米波AiP设计。图17 展示了在eWLB的基础上增加的工艺流程及实现了的AiP实物剖面显微照片[39]。

image.png


(a)  用模塑化合物  (1)  重新构造的晶圆

image.png


(b)  在裸芯片信号线一侧增加RDL层及相应的介质层

image.png


(c)  在介质层上覆盖模塑化合物  (2)

image.png


(d)  在模塑化合物  (2)  上实现微带天线辐射片

image.png


(e) 将封装整体倒扣及粘在载体上

image.png


(f)  在模塑化合物   (1)  上进行钝化及打孔

image.png


(g)  使孔壁金属化

image.png


(h)  撤走载体及清除粘合物

image.png


(i)  切割及植入焊球

image.png


(j)  焊在系统板上

image.png


(k)

图17、IME在eWLB的基础上增加的工艺流程及实现了的AiP实物剖面显微照片

日月光开发的低成本先进的单边基片(aS3-AiP)工艺强调采用普通封装设备及超薄双层金属基片取代FOWLP介质及RDL层[16]。这样不仅成本较低,而且过渡损耗可与FOWLP媲美,在77GHz汽车雷达应用方面具有价格与性能优势。

4.3   设计

AiP设计需要考虑到系统、电路、天线、封装、互连等多个方面。限于篇幅,本节仅介绍AiP设计中的天线部分,并且主要讲述最新发展出的叠层微带天线设计与优化方法。

叠层微带天线可以设计成双频带或宽频带天线。双频带设计由S. A. Long 等人于1978年发表在国际天线与传播大会论文集上[40],宽频带设计由P. S. Hall等人于1979年发表在电子学快报中[41]。后续对叠层微带天线的研究主要集中在进一步扩展宽频带叠层微带天线的带宽,列如,R. B. Waterhouse 透露了高低介电常数基板搭配等增加带宽的设计技巧[42],刘章发等人给出了简单计算上下叠层贴片谐振频率的公式及增加带宽的方法[43],高式昌等人发明了新的双线极化槽耦合叠层微带天线,实现了宽带、高极化隔离度、低交叉极化及低后向辐射的良好性能[44]。

叠层微带天线具有频带宽、波束宽、频域滤波、灵活实现单或双极化、方便静电保护、易于满足多层结构金属化密度要求及利于散热等优点,因而在AiP设计中得到广泛应用[11,12,18,19,23]。最早将叠层微带天线引入到封装天线设计的是李融林等人,他们提出的叠层微带天线设计指导原则对封装天线设计具有很高的参考价值[45]。

叠层微带天线的上下层贴片分别和地之间构成了两个谐振频率不同的微带天线。一般通过选择尺寸有稍微差异的上下层贴片,产生较为接近的两个谐振频率,达到拓宽频带的效果。此外,研究还发现叠层微带天线在离开工作频带高段不远处的一个频点上,会出现电流在上下层贴片流向正好相反的状况,从而导致远场区的辐射在此频点上互相抵消,辐射效率频谱曲线上出现了一个‘传输’零点,叠层微带天线也就成为了一个名不副实的滤波器。

叠层微带天线可以更准确地称之为叠层微带滤波天线,它的拓扑结构如图18所示。图18中的辐射体2与1分别代表上下层贴片。馈电探针提供了源(S)与辐射体1之间的外部耦合。而源和负载(L)之间由于探针功率的外泄也存在微弱的耦合。辐射体1与2的辐射分别提供了它们到负载之间的耦合。辐射体1和辐射体2是通过它们之间的间隙进行耦合。

image.png


图18、叠层贴片天线的拓扑结构

叠层微带天线设计常常遇到的问题是如何调控上下层贴片的谐振频率及二者之间的耦合。文献[43]中给出的上下叠层贴片谐振频率的公式较好地解决了计算谐振频率的问题,但是上下叠层贴片之间耦合的问题一直没有能得到很好地解决。设计者通常都还是通过参数扫描来确定谐振频率与耦合,这样作存在着很大的盲目性,常常会遇到在两个谐振频率附近|S11|远低于-10dB,但是在两个谐振频率中间某个频段|S11|不论如何调,总是高于-10dB。目前,这一耦合问题由上海交通大学毛军发院士团队利用滤波器耦合矩阵理论解决了[46]。解决的方法是将叠层微带滤波天线看作一个二阶带通滤波器,天线的输入口当作滤波器的一个端口,天线远场辐射当作滤波器的另一个端口。众所周知二阶带通滤波器有一套成熟的设计方法,诊断与调试通过观测耦合矩阵来实现。那么现在的问题是如何获取叠层微带滤波天线的耦合矩阵?文献[46]给出的步骤如下:

1) 通过全波仿真软件得到叠层微带天线S11和可实现辐射效率信息说明: http://file.elecfans.com/web1/M00/59/04/o4YBAFtitU-AIMZQAAACMrj6aFA229.jpgrad2) 去除S11的群时延与相位加载之后在归一化的频域范围内用矢量拟合的方法得到S11的表达式[47,48]3) 通过优化拟合说明: http://file.elecfans.com/web1/M00/59/04/o4YBAFtitVCAckVdAAACMrj6aFA058.jpgrad可得到S21的一组零点解。这样另外2Nz-1组零点也能得到,其中Nz是S21分子的阶数,暂时先选取其中一组解去进行后续的分析。4) 使用公式得到S22的留数,同时满足不等式时找到S22常数项的范围,在所有可能的解中找到最接近于1的解。5) 从2Nz组解中找到最终的结果,把S22和S21的相位加载效应去掉。6) 把二端口的散射矩阵转换成导纳矩阵,然后得到耦合矩阵。7) 计算出灵敏度矩阵,然后得到滤波天线新的几何尺寸。8) 重复步骤1) 到7) ,直到获得我们想要的频率响应。

图19是基于Ferro A6M LTCC 材料与工艺设计的45°极化叠层微带天线结构。设计要求天线应具有2GHz的带宽,覆盖5G通信的27.5GHz到29.5GHz频段。设计时的初始值选取参考了文献[44]中的数据,诊断与调试根据上述步骤进行,一般经过3到5个循环就可以达到设计目标。表2是设计尺寸。

image.png


图19、45°极化叠层微带天线结构

表2、45°极化叠层微带天线设计尺寸

变量

A

B

L1

L2

D

值(mm)

6

6

1.928

1.867

0.59

变量

W1

W2

上下层贴片之间距离

下层贴片基板厚度

值(mm)

0.79

1.959

0.384

0.096

 

图20是实物照片及设计与测试的S11和增益频谱曲线。如图所示,设计与测试结果吻合的非常好,表明新方法不仅正确,而且可以提高设计效率。图21是将45°极化叠层微带天线组成2元阵实物照片及设计与测试的S11和增益频谱曲线,设计与测试结果仍然吻合良好[49]。

image.png


image.png


image.png


图20、实物照片及设计与测试的S11和增益频谱曲线

image.png


image.png


image.png


图21、实物照片及设计与测试的S11和增益频谱曲线

上面提出的方法目前只用于二阶的上下叠层微带滤波天线,而实际的应用中可能面对更严苛的要求,比如需要三阶的上中下叠层微带滤波天线,然而随着阶数的升高,S21分子的选择可能性就会呈现指数式的增长,所以对S21分子零点的选取应该找一些更有力的依据,使其最好只能选取一种情况。同时对于S22常数项的选取方法也需要一个严格的数学推导。

为了进一步提高AiP技术天线部分设计通用性及效率,上海交通大学毛军发院士团队成功地将蝙蝠优化算法在Matlab中实现,而且通过Script链接到HFSS对天线进行自动优化调试,取得了非常令人满意的结果。同样基于Ferro A6M LTCC 材料与工艺,二阶的上下叠层微带滤波天线经过优化实现了6GHz的带宽,覆盖5G通信的24GHz到30GHz频段。

4.4   测试

测试是AiP技术非常重要的一环,目前AiP测试的重点已经由研发环境下仔细深入地测试与表征向生产阶段快速功能测试与系统级标准指标评估方面转移。研发环境下的AiP测试技术相对成熟,一般都采用在小型天线暗室中搭建的探针式测试平台上完成。图22是上海交通大学毛军发院士团队建成的集成天线远场自动测试平台照片。该测试平台可以完成从18GHz到325GHz(为适应THz频段天线测试可扩展到500GHz或更高)片上天线及封装天线阻抗及辐射特性测试。平台支持探针及波导馈电,110GHz以下也可用同轴馈电,性能达到世界先进水平。平台自建成后,利用率相当高,已为国内多家科研院所的研究项目及公司产品开发提供了测试服务,极大地助进了我国在片上天线及封装天线方面的研究与发展。

image.png


image.png


image.png


图22、上海交通大学集成天线远场自动测试平台照片

但是,图22所示的测试平台并不适用于生产线上快速测试的要求。生产阶段快速测试与生产线所采用的封装工艺紧密相关。如果AiP采用HDI工艺制造,那么AiP本身可以进行独立的传导及OTA(over-the-air)测试,芯片封装好以后还可以进行OTA 测试。如果AiP采用FOWLP工艺制造,那么AiP本身已与芯片融为一体,仅可以进行OTA 测试。生产线上AiP测试至少需要测试仪(Tester)、操作仪(handler)、接触器(contactor)、探头(probe)及天线暗室等仪器设备。测试仪与操作仪可以在已有的半导体封测设备上添加或扩充,天线暗室可以直接定制。但是在接触器与探头方面仍然面临许多挑战。美国Xcerra公司最近在为毫米波汽车雷达AiP测试方面开发接触器与探头方面取得进展,图23所示的接触器工作频率可以到100GHz,适用于球形焊点阵列间距最小到0.3mm封装[50]。此外,该公司也尝试将微带天线嵌入到接触器中进行无线测量[51,52]。

系统级指标评估是AiP已经安装在整机内,需要按照系统应用标准所进行的测试。目前这一方面的测试系统与方法已取得显著进展,这里不再赘述。

image.png


image.png


image.png


图23、Xcerra公司开发的AiP测试接触器

5结束语

2018年注定是商用毫米波通信与雷达发展史上重要的一年,也会是毫米波5G通信发展里程碑式的一年,更加会是奏响AiP技术进入海量应用序曲的一年。

作者首先分析了新闻发布、媒体报道及市场报告,发现开发适用于毫米波5G通信用户终端的AiP技术是目前大家最关注的热点。接着作者通过组织、参加与追踪研讨会,发现目前AiP技术的开发主要集中在诸如高通及海思等芯片设计公司、台积电及三星等半导体集成电路制造公司、日月光及矽品等封装测试厂家。而且这些大公司正在不断地投入大量人力物力开发适合于AiP设计的新材料和新工艺,旨在实现高辐射效率及低成本量产。反观传统的天线公司,由于缺乏芯片与封装方面的能力,正在考虑或尝试着看如何介入。然后作者重点介绍了AiP技术在材料、工艺、设计、测试等方面的新进展。在材料方面,模塑化合物与玻璃受到关注。在HDI工艺方面,增加核心层厚度来实现非平衡式叠加层布局,证明有利于低成本量产毫米波5G通信用户终端AiP。在FOWLP工艺方面,作者注意到为了更加灵活地实现高性能AiP,金属层在增加。设计方面是大学研究生可以着力的地方。上海交通大学毛军发院士团队最近在AiP设计方法上取得了新成果,成功地将蝙蝠优化算法在Matlab中实现,而且通过Script链接到HFSS对天线进行自动优化。测试是AiP技术非常重要的一环。目前AiP测试的重点已经由研发环境下深入细致地测试与表征向生产阶段快速功能测试与系统级标准指标评估方面转移。将微带天线嵌入到接触器中进行无线测量是令人耳目一新及有意义的尝试。

 



以上一文,仅供参考!


欢迎来电咨询合明科技SIP系统封装焊后焊后清洗、锡膏清洗、水基清洗剂、5G天线焊后锡膏清洗剂、助焊剂清洗剂、半导体芯片封装清洗剂、功率模块器件水基清洗剂,电子组件制程水基清洗全工艺解决方案!



【阅读提示】

以上为合明科技在工业清洗方面的经验的累积,我们是国内自主掌握核心水基清洗技术的先创品牌,在水基清洗、环保清洗方面有着丰富的经验,也成为了IPC清洗标准主席单位。但是因为工业清洗问题内容广泛,没办法面面俱到,本文只对常见问题作分析,随着电子产业的不断更新换代,新的工艺问题也不断出现,本公司自成立以来不断追求产品的创新,做到与时俱进,熟悉各种生产复杂工艺,力争能为客户提供全方位的工业清洗解决方案。

 

【免责声明】

1. 以上文章内容仅供读者参阅,具体操作应咨询技术工程师等;

2. 内容为作者个人观点, 并不代表本网站赞同其观点和对其真实性负责,本网站只提供参考并不构成投资及应用建议。本网站上部分文章为转载,并不用于商业目的,如有涉及侵权等,请及时告知我们,我们会尽快处理。

3. 除了“转载”之文章,本网站所刊原创内容之著作权属于合明科技网站所有,未经本站之同意或授权,任何人不得以任何形式重制、转载、散布、引用、变更、播送或出版该内容之全部或局部,亦不得有其他任何违反本站著作权之行为。“转载”的文章若要转载,请先取得原文出处和作者的同意授权。

4. 本网站拥有对此声明的最终解释权。

上门试样申请 0755-26415802 top